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• Why and how build physics-based 
earthquake simulators?

• Can we use lab experiments to constrain 
large-scale fault models? what are the 
limitations?

• What is the best way to infer microphysical 
processes from macroscopic measurements?

• How can we account for observational errors, 
model uncertainties, and potential 
deformation regime changes during each 
experiment? 

Motivation



The four rupture probability models to be applied 
to each fault currently proposed in OpenSHA are: 

• the time-independent Empirical Poisson,

• the Brownian Passage Time (BPT) model, which 
depends on the time since the last event  
(Matthews&Ellsworth, 2002),

• the BPT-step model, which accounts for 
earthquake-induced stress changes, 

• the time-predictable model. 

Renewal models used in Seismic Hazard 
Assessment

No Fault Physics



What are the modules 

governing the large-scale 

behavior of the fault system

Données

Interfaces quantitatives 

avec propagation des incertitudes 

-> lois de comportement

Quantitative modules:  

Constitutive laws

Données
Observations

Data

Modèles physiques 

de sismogénèse
Physics-based models of 

seismogenesis

Prédiction des 

modèles, avec 

incertitudes

Quantitative Interfaces 

with propagation of uncertainties 

and model selection 

What are the dominant 

processes?

for each type of behavior

What data do we need to 

measure with precision ?

BAYESIAN MODELLING FRAMEWORK FOR DATA ASSIMILATION 

What other properties indicative 

of the state of a fault are worth 

measuring / integrating?

What dominates the 

uncertainties on the model 

predictions?
Model predictions 

with 

uncertainties

EXPECTED RESULTS

Fault zone 
Structure

Fault system 
Geometry

Models of:  Models of:  Quantitative modules:  

Constitutive laws

Boundary 
conditions

After Fitzenz et al. Statseis V, 2007

Motivation for  Bayesian, physics-based, 
models of seismogenesis



Traditional bases of models of sismogenesis: 
observations and geological or geophysical 

measurements

Massonnet et al. (1993) 
Landers earthquake (1992)

1) Elasticity of the upper crust

2) Deformation highly localized in a zone 
that is	
	 - impermeable 
	 - weak
	 - place of episodic fluid 
	 circulation 

 Nojima Fault
Lockner et al. 00
Boullier et al. 04 

Massonnet et al. (1993) 
Landers earthquake (1992)

Landers 1992
Massonnet et al. 93



→ Close to active faults, local 
rotations
Need for a monitoring of the space and 
time evolution of the anomalies in 
stress orientation

Fault strength and stress 
orientations

Application to Big Bend in the San Andreas  

x

y

30 years of debate...
→ Is the stress field stable in 
time?

Fitzenz & Miller, JGR 04Fitzenz & Miller, GJI 03

+ 2 types 
 of rheology



• Synthetic seismicity

Examples of model results

Northern Segment

Southern segment

M0=G.ΣiδiAi Mw=2/3 log10M0-10.7



Pore pressure monitoring
Additional model results

Regional stress state
and corresponding 
deformation regimes
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• Loading rates (from GPS or such)

• Fault geometry (from seismicity, seismic or 
potential fields surveys)

• Topography (levelling surveys, lidar, optical 
images)

• But also data from the lab or other sources to 
constrain the constitutive laws

More data integration



The role of fluids in faulting
Inelastic interseismic 
processes



Our Bayesian inference scheme

∂ϕ

∂t
= θ0 × σθ1

eff × exp(−θ2/(RT ))× exp(θ3ϕ)

When the grain-size effects can be neglected, 

and we make no assumption on the mechanisms, 

we can choose a creep law of the type:

Choice of the model m

Observations

Experimental or simulated porosity time series

Apparent 

activation 

energy 

Stress 

exponent

*

The five steps of the inference

A: Choose the parametrization making the problem 

as linear as possible   

B: When a factorization appears in the new Bayesian network, 

adopt a hierarchical inference scheme

D: Eliminate the nuisance parameters (marginalization step)

E: Revert from the new parametrization to the original 

parameters !i  

C: Calculate the joint probability density function according to the 

graph structure (the joint pdf is proportional to the posterior pdf).

*Prerequisite

- Integration of the creep law: we want to use the data, 

not a subproduct of it

- Reparametrization such that the problem is as linear 

as possible 

(work with Gaussians) Fitzenz & al., MaxEnt 05



Bayesian networks
Inferred 

initial 

porosity

!
0

Porosity 

(measured or 

simulated)

"obs

Creep model m 

(e.g., 
pressure solution, 
dislocation creep, 
stress corrosion 
cracking)

i observations

n experiments

Experimental 

conditions 

 T, !eff

Compaction 

parameters #

activation energy of 
process m, 
stress exponent, 
  etc.

Time of the 

measurement 

t

Generative model Inference

- Each node is a random 
variable
- Each arrow shows a causality 
relationship



Application to real 
experimental creep data

10

20

2000000

Niemeijer et al., EPSL 2002

50-150 MPa, 400-600oC

Po
ro

sit
y,

 %

Time, s

Fitzenz & al., JGR 07

Global data set: 88 points

!j={6.40 10-11; 2.55; 37 kJ/mol; 0.53}, 
with std. dev. of 3.0 10-11, 6.2 10-2, 1.6 

103, and 9.4 10-3 resp.

Subset "/"0 ∈ [0.5,0.8] : 53 points

!j={4.2 10-13; 3.56; 57.6 kJ/mol; 0.71}, 
with std. dev. of 2.3 10-13, 0.11, 2.6 kJ/mol, 

and 0.016 resp.



Interpretation and questioning

Most likely mechanisms : 
compaction rate-controlled by dissolution 
+ cataclasis or stress corrosion

Stress exponent 3.5
Apparent activation energy 60 kJ/mol  

However: 
The relation between contact stress and applied stress 
may be affected by changes in grain packing

We need to perform a test on a more controlled 
system: could we identify pure pressure solution?



Rock physics detour



Validation procedure: 
simulated pressure solution

Single contact model by Bernabe and Evans 2007 
based on the evolution of the contact shape
	 	 	 	 	 	 		 	 - Stress exponent 1
	 	 - Apparent activation energy: 
	 	 	 between 72 kJ/mol  (contact dissolution) 
	 	 	 and 15 kJ/mol (interface diffusion)
	 	 throughout the simulated experiments

Data transformed into porosity time series by assuming 
a simple cubic packing geometry + Gaussian noise

Challenge:
Analyze data whose behavior is driven by the contact area 
without knowing how contact area evolves through time



Identifying transitions

x = realization of a random variable
hypothesis testing: x is normally distributed, 
variance σ2, mean μ
|x-μ|>2σ: less than 5% likely to have 
occurred by chance

For each experiment, we estimate the maximum number 
of points n belonging to the same deformation regime 
using a χ2 test

!
, 

%

t
1  

... t
i-1

t
i

pdf of !obs

with !(t)=m(T,"eff,#,!0,t)

Σn<N (Φ-Φobs)2
noise variancex=



10 simulated experiments
Exp # σn (MPa) T (K)

0 5.482 508

1 2.564 508

2 0.495 508

3 0.080 508

4 1.591 10-2 508
5 0.495 574

6 0.495 542

7 0.495 508

8 0.495 472

9 0.495 435

201 points/experiment, 
Gaussian noise with std dev 0.005

After Bernabe & Evans 
2007



Identifying transitions
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The 2 deformation regimes 
(at 3σ)

Regime 1: 	 Stress exponent 0.97 +/- 4.4 e-3
	 	 	 	 	 Apparent act. energy 56.9 kJ/mol 
	 	 	 	 	 +/- 0.3 kJ/mol
Regime 2: 	 Stress exponent 1.2 +/- 5.4 e-3
	 	 	 	 	 Apparent act. energy 32.8 kJ/mol 
	 	 	 	 	 +/- 0.1 kJ/mol

- Stress exponents close to 1 as assumed in Bernabe & Evans
- Both activation energies between 72 kJ/mol  (contact dissolution) 
  and 15 kJ/mol (interface diffusion);
- For the early stage, Bernabe & Evans obtained 58 kJ/mol with a   
 different method (knowing the contact area as a function of time);
- The late times are better approached with our method.



Validation procedure: 
simulated pressure solution

Conclusion:

- With stress exponents close to 1 and a decreasing apparent 
activation energy from above 57 kJ/mol down to below 33 
kJ/mol, we can infer that the deformation is pressure 
solution, mostly controlled by dissolution at the beginning, 
and with a larger contribution of interface diffusion as 
contacts grow.
- The times (and porosities) of the transition are T- and σn-
dependent.



Back to earthquake 
simulators 

and seismic hazard 
assessment



Time to failure using the creep law 
inferred using the Niemeijer et al. data
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Time to failure distributions
• undrained

• 1 fault element

• t=0, 12% porosity

• z=3km

• {!j} from previous 
inversion

• (static) friction=0.6

• d!/dt=2.5 bar/year

• d"n/dt=0

• Coulomb failure:

#!friction*("n-Pf)
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a

Uncertainties 
on the compaction 

law

+ Uncertainties on porosity 
after an earthquake

+



Conclusions
1. We developed a Bayesian inference scheme that we 
validated using simulated pressure solution experiments;

2. The analysis of simulated experiments can also guide 
the design of future experiments;

3. We applied this method to real compaction data 
obtained at hydrothermal conditions;

4. We showed how to propagate the uncertainties to time 
to failure distribution;



and future directions
This type of Bayesian framework seems promising for 
future efforts to compute earthquake probability models 
including the “known” fundamental physics, different 
types of data, their observational errors, and the model 
uncertainties when they exist. 



Thank you



The 3 steps of the inference

δ(f(ϕ0, t
i,λ′, ν)− φi)

Prior pdfJoint pdf DiracGaussian pdf

A: For each experiment, infer !' and ν   

P (ϕ0, {φi,φi
obs}, λ′, ν) = P (ϕ0)

∏

i

P (φi
obs |φi) P (φi |ϕi,λ′, ν)

B: Infer ! from  {"'n, νn}  

Gaussian pdf

P (Θ, {λ′ n
, νn,λ′ n

obs, ν
n
obs}) = P (Θ)

∏

n

P (λ′ n
, νn |Θ, mn) P (λ′ n

obs, ν
n
obs |λ′ n

, νn)
Dirac

C: Revert from  ! to the creep parameters !i  

(Gaussian approx. of the posterior of ")

P (θ | {{φi
obs,ϕ

i
obs}n}) ! P (θ | {λn

obs, ν
n
obs}) ! Gθ

(
F−1(Θ̂), (JT B J)−1

)

Hierarchical

inference 
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“Elementary steps”
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Generate !obs for each experiment 

with "(t)=m(T,#eff,$,!0,t)

Generative model
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Find the pdf of $ using all the !obs, 

assuming that m reflects the domi%

nant process during all of the experi%

ments.

fixed random observed



Identifying transitions
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