

Bayesian inference of disparity maps for DEM generation and ground deformation

André Jalobeanu PASEO Research Group LSIIT, Illkirch, France now at CGE, Evora, Portugal

Delphine Fitzenz IPG - EOST, Strasbourg, France now at CGE, Evora, Portugal

SPACEFUSION Project - Projet ANR "Jeunes Chercheurs" 2006-2008

Outline

Background and objectives Ø Problems with existing methods **Bayesian inference** Assumptions, forward model Smoothness priors Graphical model Preliminary tests Results from real data ☑ Future work

Background - the SpaceFusion project

Science objectives - multisource data fusion

- Astronomical data fusion and super-resolution
- Digital Elevation Model (DEM) generation
- By-product: ground deformation map
- Fusion of optical images into rectified reflectance maps
- Main contribution: uncertainties

In practice

- 3-year grant, funded by the French Research Agency (ANR)
- 1 full-time PI, 3 part-time CO-I, 2 collaborators,
 1 postdoc, 1 invited professor, 3 master students
- 2006 & 2007: LSIIT, Strasbourg, France
- 2008: CGE Evora, Portugal

Summary

• Applications: Earth & planetary sciences

- High-resolution ground deformation maps
- Surface reconstruction: DEMs + reflectance of natural areas

• Our main objectives

- Dense vector disparity maps with sub-pixel accuracy
- Provide the uncertainties to allow for error propagation

Why use optical images

Availability, coverage, redundancy, price

Requirements

Raw images, well-sampled

Necessary tools

Probability theory, signal processing, computer vision, applied math, and of course some Physics!

Some problems with existing methods for stereo 3D reconstruction

• Shape from Stereo

Drawbacks :

Relies on finding point matches in both images

The density of detected features is not uniform

Dense stereo via disparity maps Drawbacks :

- Photometric matching areas in both images of minimum size
 Usually works in 1D from resampled images!
- Generalized stereo (deformable models)
 Drawbacks :
 - Not Bayesian: difficult to estimate model parameters...

Sub-pixel accuracy, uncertainty map, 2D vector?

Deformation fields in Earth Sciences

D. Fitzenz, J. Van der Woerd - IPG Strasbourg

 Infer the parameters of a dense deformation field 2 images: one before, one after earthquake/deformation/event...
 Deformation field = spatially variable translation vectors
 Challenge: subpixel accuracy (0.1 pixel to detect a 30 cm shift)
 Allow for discontinuities on segments (faults)

Before EQ (simulation)

After EQ (simulation)

Tests: existing methods for ground deformation measurement

Real remote sensing data

Simulations

Klinger et al, 2006, Kunlun fault. 1m accuracy, 320m resolution "optical image correlation"

> High resolution? Uncertainty map?

Image space, nonrigid (least squares)

Bayesian inference

- Eliminate the unwanted parameters (integration)
- Compute the optimal parameters of interest (optimization)
- Compute the related uncertainties (derivatives)
- Model selection and assessment (comparison)

Probabilistic data fusion vs. averaging

Take into account uncertainties: variance, correlations
 Formal framework for the combination of multiple observations

Propagate uncertainties From the observation noise to the end result! Downside: algorithms ought to account for input uncertainties

Basic ingredients & mathematical tools

Forward modeling:

- All parameters are random variables
- Data image formation model (rendering + degradations)
- Prior object modeling (disparities, 3D, etc.)
- Graphical models convenient for design and understanding

Bayesian inference scheme:

- Integration w.r.t. nuisance parameters (aka. marginalization)
- Deterministic functional optimization for speed
- Error propagation / uncertainty evaluation (covariance matrix)
- Approximations required (otherwise intractable)

Forward model 1. Underlying 2D "reflectance map"

Common reflected radiance map

• Model this map as a 2D image:

- Choose an appropriate parametrization and topology
 - Sampling grid size ε
 - Rectangular lattice

Use the sampling theorem

- Frequency cut-off (optical resolution)
- Well-sampled images (wrt. Nyquist rate)
- Near-optimal representation using Splines:

Target PSF (B-Spline 3)

2. Modeling radiometric changes

Parametric

- Multiplicative changes include reflectance effects (non-Lambert, lighting variations), shadows, atmospheric attenuation, instrumental artifacts...
- Additive changes include atmospheric haze, clouds, instrumental biases...
- Additive noise approx. Gaussian, independent pixels

Why use a spatially adaptive change model

Test - global joint histograms after registration:

No changes: diagonal

Add. and mul. changes

Test area and simulated changes

change model parameters should be spatially adaptive!

3. A smoothness prior model for disparity maps

Arbitrary disparity maps: surface deformation
 Depends on the application (earthquakes, erosion...)

Constrained disparity maps: 3D reconstruction
 Epipolar lines... *if known*!

- **d**_x: very smooth
- **d**_y: related to the topography

...planetary surface modeling

Self-similar process based on image gradient operators

Markov Random Field: spatial interactions btw. neighbor parameters

Bayesian inference from 2 observations

Graphical model: build the joint probability density function (pdf)
 Marginalization: integrate the joint pdf w.r.t. nuisance variables

Inference Method M3

- Marginalize all change model parameters
- Use **explicit** values for prior model parameters
- Use the evidence framework to estimate them automatically, then plug in the estimated values

How the inference algorithm works

Compute the marginal Maximum A Posteriori, and a Gaussian approximation around the optimum

Iterative optimization of an energy functional (nonlinear search: conjugate gradient, ...)

 $\log P(d_x,d_y | Y^1,Y^2) = D(d_x,d_y,Y^1,Y^2) + Prior(d_x) + Prior(d_y)$

data term smoothness penalty

Inverse covariance matrix: uncertainties

Second derivatives of the energy U at the optimum

Bayesian inference: preliminary tests (change = iid Gaussian noise, window-based estimation)

disparity dx,dy variance of dx,dy **Bayesian inference:** disparity dy + error bars (and ground truth)

source image

RAW SPOT 5, multidate, 128x128 pixels @ 3.5m, 1 disparity vector / pixel

standard deviation maps [-0.2,0.2]

correlation map [-1,1]

images Y1, Y2 [0,255]

color map

Results - real data, method M3

RAW SPOT 5, multidate, 4096x4096 pixels @ 3.5m, 1 disparity vector / 4x4 pixels

Data: images of Bam, Iran - before and after earthquake (10/03 and 02/04)

N-S projection of the displacement map eliminating most topographic artifacts (residual geometric effects not removed)

Results - real data, method M3

RAW SPOT 5, multidate, 128x128 pixels @ 3.5m, 1 disparity vector / 4x4 pixels

correlation map

change map

Results - real data, method M3

RAW SPOT 5, multidate, 1024x1024 pixels @ 3.5m, 1 disparity vector / 2x2 pixels

Color-coded disparity map, linear correction applied

(area near Bam, Iran; across-track stereo pair)

Future work

• To do...

- Push-broom camera calibration using the disparity map
- Disparity map conversion into an elevation model
- Generation of rectified fused reflectance maps
- Full 3D surface recovery from n images:
 - Rendering: take into account possible occlusions
 - Reflectance map inference

- Validation on real data (raw images required)
 - Along-track (simultaneous): HRSC on Mars Express, ASTER
 - Across-track (multidate): SPOT 5
 - Ground truth? sparse GCP, LIDAR points, SRTM DEM...

