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Exergo-enviromental analysis of renewable/waste
heat based Organic Rankine Cycle (ORC) using
different working fluids

S. Aghahosseini', I. Dincer’

Abstract — In this paper, a comprehensive thermodynamic analysis of Organic Rankine Cycle (ORC) using difterent
working fluids driven by renewable/waste low-grade heat sources is conducted, and the performance and environmental
characteristics of cycle, especially the potential CO, emission, are investigated. The comparative evaluation of cycle
using a combined energy and exergy analysis is performed by varying certain system operating parameters such as
efficiencies, mass flow rate, cycle irreversibility and heat input at various temperatures and pressures. Moreover the
toxicity, flammability, ODP and GWP of different working fluids besides utilizing renewable heat sources are studied as
a safety and environmental assessment. The results from this analysis provide valuable insight into selection of the most
suitable fluids for power generating applications using low-temperature heat sources.
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1 INTRODUCTION

The Recent major concern of energy industries has
been increased utilization of fossil fuels towards
global warming, air pollution and ozone depletion.
Morecover, waste heat energy being released from
process industries and power plants contributes to
serious environmental pollution [1]. In this context,
utilization of renewable heat based technologies as
well as waste heat for electricity production becomes
significantly point of interest. Also because the fact
that the thermal efficiency of conventional steam
power generation becomes uneconomically low when
the gaseous steam temperature drops below 371°C,
using water as a working fluid become considerably
less efficient and more costly [2].

In recent years, Organic Rankine Cycle (ORC) has
become a field of intense research and appears as a
promising technology for conversion of low-
grade heat into useful work or electricity. The heat
source can be of various origins: solar radiation [3],
biomass combustion [4], geothermal energy [5] or
waste heat from process industries [6, 7]. Some actual
applications have been installed for recovering
geothermal and waste heat for power generation [8,
9.

Examples are the plants in Altheim, Austria, with a
power production of IMW [10, 11] and in Neustadt-
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Glewe, Germany, with a power production of 0.2MW
[12]. Unlike in the steam power cycle, where vapour
steam is the working ORC cycles employ refrigerants
or hydrocarbons. The selection of the working fluid is
critical to achieve high thermal efficiencies as well as
optimum utilization of the available heat source and
also involves various tradeoffs. Moreover, the organic
working fluid must be carefully selected based on
safety and environmental propertics assessment.
General  criterion  such as  thermodynamic
performance, fluid stability limit, flammability, safety
and environmental impact could be used to screen
different working fluids. Vijayaraghavan and
Goswami [13], Badr et al. [14], Saleh et al. [15],
Hettiarachchi et al. [16], Drescher and Briiggemann
[17] are some of the rescarchers who analyzed the
characteristics of different working fluids in an ORC
application. It can be also seen that the previous
studies of ORCs regarded just more about single
component organic fluids. However, an important
limitation of pure fluids is the constant temperature
evaporation which is not suitable for sensible heat
sources such as waste heat. The mixtures have
variable temperature during the phase change process,
which could be used to reduce the mismatch of
temperature profiles between heat transfer fluid and
the evaporating or condensing working fluid mixtures.
So, it can be concluded that the system irreversibilities
can be minimized. Wang and Zhao made a theoretical
analysis of zeotropic mixtures R245fa/R152a used in
low-temperature  solar Rankine cycles [18].
Radermacher analyzed the mutual influence of
working fluid mixtures properties on the performance
of Rankine cycle, and simple counter-flow heat
exchangers are suggested in the system for the
mixtures [19].

In the present work the energy and exergy analysis of
ORC based on potential of different working fluids for
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power production are investigated at various operating
conditions. Also, the cycle total irreversibility,
required amount of renewable/waste heat for cycle
operation and characteristics of selected potential
environmentally friendly working fluids are evaluated
and compared for a 100kW power system. Besides,
due to significant arising interest in using multi-
component mixture for ORCs, the exrgo-
environmental analysis of two different zeotropic
mixtures utilized in the low-temperature heat Rankine
cycle is provided and compared.

2 METHODOLOGY

The components of an ORC are similar to the
conventional Rankine Cycle which consists of a
pump, cvaporator, expander and condenser. The
working fluid is saturated liquid at the exit of the
condenser; it is then pumped to the evaporator where
it gains heat from the renewable/waste heat source.
Hot pressurized working fluid which could be
saturated or superhecated expands in the expander
thereby generate useful work. The layout of an ORC
is as shown in Fig. 1. The expander considered here is
similar to the scroll expander investigated by
Zamfirescu et al. [20] and Quoilin et al. [21].
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Fig. 1. Schematic of Organic Rankine Cycle.

As it was mentioned earlicr, the selection of
working fluids and appropriate operation conditions
are the most important criteria to system performance.
The thermodynamic properties of working fluids will
affect the system efficiencies, operating conditions,
and environmental impact. Technically, the working
fluid can be classified into three categories. Those are
dry, isentropic, and wet depending on the slope of the
cycle T—s diagram to be positive, infinite, and
negative respectively. Also ORC can be classified in
two groups according to the level of expander inlet
pressure, including supercritical ORCs and sub-
critical ORCs; the one which is investigated in the
present study.

Figs. 2 and 3 show T—s diagrams of two types of
ORC processes with the negative slope of the
saturated vapour curve. As is shown in Fig. 2, the
working fluid leaves the condenser as saturated liquid,
state point 1. Then, it is compressed by the liquid

pump to the sub-critical pressure, state point 2. The
working fluid then is heated in the evaporator until it
becomes superheated vapour, state point 3. The
superheated vapour flow is expanded after to the
condensing pressure, state point 4. At the condensing
pressure, the working fluid lies in the two phase
region. The two phase fluid passes through the
condenser where heat is removed until it becomes a
saturated liquid, state point 1. The processes in Fig. 3
are similar to those in Fig. 2 with the only difference
being that the state point 4 after expansion in the
turbine lies in the superheated vapour region.
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Fig. 2. ORC with negative slope of saturated vapour curve
and wet vapour at the expander outlet.
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Fig. 3. ORC with negative slope of saturated vapour curve
and superheated vapour at the expander inlet.

Figs. 4 and 5 show T-S diagram of the other two
types of ORC processes with the positive slope of the
saturated vapour curve. The state points 1 and 2 are in
the same condition as the ORC system in Figs. 2 and
3. Starting from state 2, the working fluid is heated in
the evaporator at constant sub-critical pressure until it
becomes saturated, state point 3 in Fig. 3, or it is
superheated, state point 3 in Fig. 4. Then, it is
expanded to state point 4, which is in the superheated
vapour region.

The key point for performance analysis of ORCs
which also have be presented by Hung [22],
Gurgenci [23], Yamamoto et al. [24], and Somayajict
al. [25] is that the organic working fluid must be
operated at saturated vapour condition before
expander to reduce the total irreversibility of the
system.
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TA

Fig. 4. ORC with non-negative slope of saturated vapour
curve and saturated vapour at the turbine inlet.
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Fig. 5. ORC with non-negative slope of saturated vapour
curve and superheated vapour at the turbine inlet.

As it was mentioned earlier, In ORCs application,
the selection of working fluid is important since the
fluid must not only have thermo physical properties
that match the application but also must possess
adequate chemical stability at the desired working
temperature. Here, working fluids which are chosen
they both have almost zero ODP (Ozone Depletion
Potential) and lower GWP (Global Warming
Potential), which have less environmental impact.

The organic working fluids selected for this
investigation are R113, R123, R245fa, R600a, R134a,
R407c, and R404a with boiling points ranging from -
47C to 48°C. Tt is found that in the temperature range
that a low-temperature heat ORC system works
(usually below 200 C), few pure organic working
fluids are isentropic. Most of them are dry or wet. Wet
working fluids include R407c, R404a, R134a, and
R143a while the dry working fluids include R113,
R245fa, R123, and R600a. Table 1 provides physical
propertiecs and Table 2 represents safety and
environmental data of considered working fluids.
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Table 1. Physical properties of the working fluids

Working fluids Physical Properties
Thp (°C) | Tc(°C) Pc ( Mpa)
R113 47.6 214.1 3.44
R123 27.8 183.7 3.66
R245fa 25.13 174.42 3.93
R600a (Isobutane) -11.7 135 3.64
R134a -26.1 101 4.06
R407¢ (R134a, R125, R32) -43.6 86.8 4.597
R404a (R134a, R125, R143a)| -46.39 72 3.719

Tbp: normal boiling point.
Tcrit: critical temperature.
Pcrit: critical pressure.

Table 2. Safety and environmental data of the working
fluids

X X Saftey Data Environmental Data |Atmospheric
Working fluids o
life time (yr)
ASHRAE safety group | ODP | GWP (100years)

R113 Al 1 6130 85
R123 B1 0.02 77 1.3
R245fa Al 0 950 7.6
R600a (Isobutane) A3 0 8
R134a Al 0 1430 14
R407c (R134a, R125, R32) Al 0 1800 S
R404a (R134a, R125, R143a) Al 0 3.26 —

ODP: ozone depletion potential, relative to R11.
GWP: global warming potential, relative to CO2.
S: Seperation occurred in atmoshper

3 SYSTEM MODELLING

For the cycle performance modelling, various
operating conditions are analyzed and compared for
mentioned working fluids in order to determine the
operating condition that presents the best thermal
efficiency with minimum irreversibility.  This
evaluation is performed using a combined first and
second law analysis by varying certain system
operating  parameters  at  various  reference
temperatures and pressures. The thermodynamic
properties of fluids and system performance are
evaluated with a simulation tool Engineering Equation
Solver, EES [26]. It is assumed that the system
reaches a steady state, and pipe pressure drop and heat
losses to the environment in the evaporator,
condenser, expander and pump are neglected. Because
of the thermodynamic irreversibility occurring in each
of the components, such as non-isentropic expansion,
non-isentropic compression and heat transfer over a
finite temperature difference, the exergy analysis
method is employed to evaluate the performance for
low grade heat recovery. Consider P,=100 kPa and
T¢=25T to be the ambient pressure and temperature
as the specified dead reference state. The isentropic
efficiencies of the expander and pump are assumed
85% and 80%, respectively. The condenser
temperature was kept constant at 25°C, while the
maximum pressure used for fluids is kept 3000 kPa
close working fluid critical pressures. The temperature
differential of both evaporator and condenser and the
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cycle are assumed constant at 10C. The energy
balance equation of the cycle can be expressed as

ZEinpul - ZEoulpul = ] (1)

Also for the cycle calculation, the exergy of any state
point is considered as

E :m[(hl—ho)—a(si—so)} 2)

The energy efficiency of the ORC is defined on the
basis of the first law of thermodynamics as the ratio
of the net power output to the provided external heat.

(P gt = Wonpus)

_ output o
nenergy —cyele (3)

Qinpul

In order to reflect the ability to convert energy from
low grade waste heat into usable work, cycle exergy
efficiency which can evaluate the performance for
waste heat recovery is calculated as

_ (VVoulpul - VVinpul )
exergy—cycle - T (4)
_ X 1 I
Qmp“l ( z?avaporator )

The irreversibility rate for uniform flow condition in
any state of the cycle is expressed as

. ds ds g
I1=T==Tm S—Es.+ﬂ+g—’(5)
Odf 0|: out in ( dfj l]—;:|

ISR

where “i ” represent heat transfer for evaporator or

condenser and (dssystem ) = for assumed steady state
dt

condition.

I =1 4] +1 +7 (6)
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4 RESULTS AND DISCUSSION

In this part, the results of modelling and detail
calculations of ORC using different pure/zeotropic
working fluid in the form of sensitivity analysis of
thermo-environment parameters. Figs. 6 and 7 show
the variation of the cycle energy efficiency with the
expander inlet pressure for pure and zeotropic

working fluids respectively while keeping the
expander inlet temperature at saturated condition. This
figure demonstrates that the system thermal efficiency
increases with the increment of the expander inlet
pressure. The results are consistent for all working
fluids and reveals that higher inlet expander pressure
increases both the net work and the evaporator heat
which leads to improved thermal efficiency. However,
the percentage of increase of the net work is higher
than the percentage of increase of the evaporator heat.
Therefore, the ratio of the net work and the evaporator
heat increases with the turbine inlet pressure.
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Fig. 6. Variation of ORC energy efficiency with expander
inlet pressure for different pure working fluids.
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Fig. 7. Variation of ORC energy efficiency with expander
inlet pressure for different zeotropic mixture working fluids.

These figures also illustrates that R113 which has
the highest boiling point among the selected fluids has
the best performance among the other pure organic
fluids, while R134a which has the lowest boiling point
temperature shows the worst performance. As the
result is also the same for zeotropic mixture fluids,
therefore, it can be concluded that the higher the
boiling point temperature of the working fluid the
better the cycle energy efficiency.

Figs. 8 and 9 depict the variation of cycle exergy
efficiency with the expander inlet pressure. It is shown
that for all mentioned working fluids the exergy
efficiency of cycle decrease with the increase in
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expander inlet pressure. Due to the fact that decrease
in the system exergy efficiency represent an increment
in the system irreversibility (higher exergy
destruction), this figure provides better understanding
of cycle performance and reveals the fact that the
higher the boiling point temperature of the working
fluid the lower the cycle exergy efficiency.
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Fig. 8. Variation of cycle exergy efficiency with expander
inlet pressure for different pure working fluids.

The cycle exergy efficiency for zeotropic
mixtures is highly correlated to temperature of
specified expander inlet pressure. The fact is that the
result should be considered just for specific range of
pressure in different operating conditions.
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Fig. 9. Variation of cycle exergy efficiency with expander

inlet pressure for different zeotropic mixture working fluids.

Figs. 10 and 11 show the effects of the expander
inlet pressure on the system irreversibility. In Fig. 10,
the system total irreversibility decreases faster for low
boiling points zeotropic mixture fluids as the
operation pressure at the expander inlet increases and
reaches a limit of 3 kW. The lowest irreversibility rate
is obtained for R404a. In Fig. 11, the system total
irreversibility increases as the pressure at the turbine
inlet increases for high boiling point working fluids.
For this category, the system irreversibility is lower
compared to fluids with low boiling points
temperature. In this analysis also the effect of heat
source temperature on the system irreversibility could
be revealed while keeping the working fluid state
along the vapour saturation curve assuming 10T
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temperature differences between the heat source and
expander inlet state.
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Fig. 10. ORC total irreversibility rate versus expander inlet
pressure for working fluids (pure fluids) with high normal
boiling points.
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Fig. 11. ORC total irreversibility rate versus expander inlet

pressure for working fluids (zeotropic mixture) with low

normal boiling points.

The heat transfer rate required in the evaporator
to generate the same power output with the expander
inlet pressure is evaluated in Figs. 12 and 13. These
figures are generated using different working fluids
for the different configurations using the same
assumptions described above and for an electric power
output of 100 kW. It is assumed that the generator
convert expander shaft power to electricity without
loss. It can be seen that the heat rate needed decreases
with increasing expander inlet pressures. This is due
to the decrease in the mass flow rate needed and the
increase in the net work of the cycle with the
increment in expander inlet pressure.

Figs. 14 and 15 show the mass flow rate needed
for the cases analyzed in Figs. 12 and 13. It can be
seen that the required mass flow rate decreases with
the increment of the expander inlet pressure. This is
because of the increase in the net work of the cycle
with the increment in expander inlet pressure. The
results are in line with the results presented in
Figs. 6 and 7 since an increment of the net work
represents an increase in the cycle energy efficiency.



S.Aghahosseini et al: Exergo-enviromental analysis of

renewable heat based Organic

Rankine Cycle (ORC) using different working fluids

1500 —
— o Ri34a
1400 —e—R600a
1300} —x—R245fa
— —=RI123
2 1200}
3
B 1100}
3 1000}
Q
['4
=
Q
I
Q
o
>
3
400

1400 1800 2200 2600

1000

3000
Expander Inlet Pressure (kPa)

Fig. 12. Variation of cycle heat required with expander inlet
pressure for different pure working fluids to produce 100
kW of electric power.
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Fig. 13. Variation of cycle heat required with expander inlet

pressure for different zeotropic mixture working fluids to

produce 100 kW of electric power.
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It can be also understood that fluids with lower
maximum pressures and higher enthalpy heat of
evaporation require low mass flow rate and hence
lower heat input. The variation of the cycle energy
and exergy efficiency with the expander inlet
temperature is analyzed for all working fluids but is
depicted in Figs. 16 and 17 just for R113, R407c and
R404a because of similar behaviour. It should be also
mentioned that evaporation pressure is kept constant
at 2 MPa.

14, T
\
0 ——o—R407c - R134a,R32,R125 (52%,23%,25%)
2 12 —e—RA404a - R143a,R125 R134a (52% 44%4%) |
2
©
3 10l
[T
(2]
(%]
=
Tz 8
=]
o
£
2 6l
o
=
4 n 1 L L L
1500 2000 2500 3000 3500 4000

Expander Inlet Pressure (kPa)
Fig. 15. Variation of cycle working fluid mass flow rate
with expander inlet pressure for different zeotropic mixture
working fluids in 100 kW electric power production.
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These figures reveal the effect of superheating the
working fluid on thermal and exergetic efficiency of
the cycle. The temperature range is from saturation
temperature of each working fluid at P=2 MPa to 30 C
above that point. It is illustrated that the energy
efficiency of the cycle slightly decreases for some
fluids or remains approximately constant for others
and also the exergy efficiency decreases with the
increment of the expander inlet temperature. This
reflects the fact that organic fluids do not need to be
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superheated to increase the cycle thermal efficiency as
opposed to water where increasing the inlet turbine
temperature increases the thermal efficiency.
However, it should be considered that organic fluids
are restricted to a small range of applicability
depending on their thermodynamic conditions.
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Fig. 18. Variation of cycle heat required with expander
isentropic efficiency at inlet pressure 2 MPa for 100 kW
electric power production.

Fig. 18 represents the variation of ORC required
heat with isentropic efficiency of expander. It is
shown that the increases in isentropic efficiency of
expander results in significant decrease in amount of
external required heat and consequently rise in the
cycle efficiencies for specified amount of power
production. It can be concluded that choosing
different types of expander thoroughly affect cycle
performance.
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Fig. 19. Exergy efficiency and cycle total irreversibility

versus ambient temperature for R134a

Fig. 19 shows the effects of the ambient temperature
on the performance of the system. The fluid used for
the analysis is the R134a. Technically ambient
temperature greatly affects the condenser. As the
ambient temperature gets close to the condenser
temperature, the condenser irreversibility and
consequently the system total irreversibility is
reduced. It can be mentioned that by increasing the
ambient temperature the exergy efficiency of the cycle
increases and in contrast, cycle irreversibility
decreases.
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It should be considered that growing need to
address reduction of greenhouse gas emissions
globally would make renewable/waste heat based
ORC technology one of the most promising technical
options for reducing CO, emissions. With
renewable/waste  heat inlet temperatures as low as
150°C, it is possible to integrate ORC technology into
plant designs or assume standalone system for any
residential application to recover electric power which
can be internally used or can be sold to the power
grid. Consequently, it could be assumed that the more
reduction in grid power consumption could result in
lower CO, emissions.

The specific Carbon Dioxide emission
(kgCO-/Kwh) for different fuel combustion systems
arc depicted in Fig. 20 and compared with
renewable/waste heat based ORC.
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Fig. 20. Kg/kWh CO, emission for different fuel
combustion system and renewable/waste heat based ORC
[27,28].

It can be revealed that application of ORC using
appropriate  working fluid for specific operating
conditions can substantially contribute to reducing the
CO; emissions per unit of useful energy produced.

4 CONCLUSIONS

Comprehensive combined energy and exergy analysis
of Organic Rankine Cycle for best sclection of
working fluid is conducted based on utilizing of
renewable/waste low-grade heat sources and certain
system operating parameters such as efficiencies,
mass flow rate and irreversibility at various
temperatures and pressures. Also environmental
characteristics of selected working fluids such
toxicity, flammability, ODP and GWP are studied.
The presented comparative evaluation of cycle
performance for both pure and zeotropic mixture
fluids provides valuable insight into selection of the
most suitable fluids for low-temperature applications
driven by renewable/waste heat sources based on
different application in various operating conditions.

I t can be concluded that generating electrical power
through ORC from renewable heat sources (e.g. solar,
geothermal) or recovering low temperature waste
heats would significantly reduce CO, emissions and
offsets grid consumption.
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