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Abstract - We examine here daily minimum and maximum temperatures recorded at 7 climatic stations all located in
Lazio region, Italy. These 14 time series were provided by the Italian “Agro-meteorological National Data Base”
(BDAN) of the National Agricultural Information System (SIAN) and cover the second half of the XX century. The
purposes of the signal processing were, first, to extract the linear trend and the two main seasonal cycles present in the
series, second, after their subtraction from the signal, to assess the relative importance of the residual stochastic
component and, finally, identifying a stochastic model for the latter, in order to arrive at an artificial simulation of the
original series. After retrieving and filling the data gaps, we obtained uninterrupted series of daily data. Then, after
detrending and filterinfg away the seasonal components (with 6-month and 12-month periods), it was possible to
determine correlograms and power spectra of the residual zero-mean stochastic component. Also, a successful attempt
was carried out to model this stochastic residual by means of an AR(1) process, thus yielding an efficient representation
of the time variability of each of the 14 temperature series. In all cases the residual white noise obtained is definitely non
gaussian. This model including the trend, the seasonal oscillation and the AR(1) process permitted a fairly good artificial
reconstruction of the given temperature series via computer simulations specific for each given climatic station. This
reconstruction, on capturing the essential features of each given series, represents a useful tool to describe and understand
the recurrence of weather patterns and the possible occurrences of weather-linked phenomena interesting the local
vegetation and the related biological processes. As a by-product, the analysis has permitted to evaluate the relative
incidence of the two main seasonal components, and their importance with respect to the residual variability associated to
purely stochastic fluctuations. From a comparison with the results of other similar studies, carried out in other countries
of Europe and Oceania, it appears that the trends found by us for both minimum and maximum temperature daily series,
when statistically significant, are generally lower than the corresponding values reported by the last IPCC (2007) for
those areas that, at least from a geographical viewpoint, appear similar to ours.
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1. INTRODUCTION full spectral analysis can be carried out in a reliable
way only on complete, regularly sampled data series,
with no gaps.

This methodology has been employed to study some
thermometric series of Lazio, a region of Central

Italy. For each series the deterministic components

The spectral analysis of time series, adopted in the
study of the most various physical phenomena,
represents a valid method of investigation also in the
field of meteorological and climatic phenomena [1,

2, 3]. The partitioning of the signal via Fourier
transform in separate periodic components allows to
obtain a quantitative assessment of the relative
incidence of each simple harmonic oscillation into
which the full signal can be resolved. In this way
one can casily recognize the presence within the
series of characteristic simple periodic phenomena
like, e.g. in the meteorological series, of annual and
seasonal cycles, and to weigh their importance with
respect to the level of the always present erratic
component, representing the contribution to the
signal of the random fluctuations. This erratic
component, on assuming that it has a stationary
character, can be in turn separately modelled by the
standard tools of stochastic analysis [4]. However, a
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have been first detected and quantitatively assessed:
these include a linear trend and two seasonal cycles,
whose frequencies and energies have been
determined; then, after subtracting these components
from the original signal, a residual signal of
stochastic nature was obtained, which was
subsequently analyzed by means of a simple AR(1)
model, thus separating the full erratic component in
an auto-regressive part and a residual white noise,
the intensity of which has been finally estimated.
The results of the overall analysis permitted us to
artificially simulate the temperature signal at each
station, thus opening the way toward the possibility
of reconstructing the series both in the past and,
cautiously, in the near future.
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Fig. 1: Map of the seven weather stations analyzed in the
Lazio area

In recent years signals of a climate change in
progress have been documented in many locations
throughout the world. In particular, positive rainfall
trends have been reported in Argentina [5], Australia
and New Zealand [6, 7]. Negative rainfall trends
have been reported in the Russian Federation [8],
Turkey [9], Africa [10, 11] and in China [12]. On the
other hand, in nineteen weather stations of Northern
and Central Europe Heino ef o/ [13] found no
changes in precipitation extremes. In accordance
with the latter study, Testa et al. [14, 15], after
examining the records in 31 Central Italy weather
stations, found no changes as well in the amounts of
annual and seasonal rainfall, and in precipitation
extremes. For what concerns temperature records,
positive trends in annual minimum and maximum
temperatures have been reported in many countries;
in particular positive trends in maximum and mean
temperatures have been evidenced in Northern and
Central Europe, as well as over the Russian

Federation, and over Canada [16], in Australia and
New Zealand [7]. Prior to 1950, the available data
were insufficient to develop global-scale maps of
maximum and minimum temperatures. Then, most
of the relevant data analysis begins from 1950. The
report of the last IPCC [17] indicates that the annual
trend in minimum and maximum air temperatures
over regions with a discrete amount of data were
+0.2 °C per decade and +0.14 °C per decade,
respectively, with a trend in diurnal temperature
range (DTR) of -0.07 °C per decade [18]. Also,
Smith er al. [19] have reported that mid-latitude
regions, such as the Mid-Western USA, Southern
Europe and Asia, are becoming warmer and drier,
while the lower latitudes are becoming warmer, too,
but wetter.

For what concerns the Mediterrancan and,
particularly, the Italian region, there are several
interesting studies of long temperature series
covering the second half of the last century and
some longer ones starting even in the XIX century
[20 , 21, 22, 23]. These studies show that the series
of annual and seasonal T.;, and T,.. exhibit
significant positive trends during the period 1865-
1996, trends greater in Central-Southern Italy than in
Northern Italy, that in both subregions mostly
depend on the behavior of data in the last few
decades of XX century. Also, these studies found a
positive significant trend for the diurnal temperature
range (DTR), higher for Northern Italy than for
Central and Southern Italy.

This vast and increasing amount of results motivated
our investigation, by which we intended, first, to
ascertain if the existence of similar trends could be
demonstrated in some arcas of Central Italy in view
of an effective detrending of our time series before
investigating their stochastic nature, which is the
main purpose of the present work, and, second, to
ascertain if the trends in minimum and maximum
temperatures are comparable with the results of the
many other studies referring to other countries in
Northern and Central Europe, in the Russian
Federation [8], in Canada [16, 24], in Australia and
New Zealand [7]. Indeed, temperature trends
observed in Europe and other continents can hardly
be directly compared with analogous trends
documented in the Italian region, where local trends
will be crucially affected by regional features, such
as peculiar changes in the large scale circulation
patterns and their modifications due to the particular
orography and to the penisular character of the most
part of Italy. For example, the global maps of
temperature anomaly reported by IPCC present a
large spatial variability, so trends found in a limited
area might sensibly differ from the average global
behaviour. But, it is interesting here to note that the
reported mean temperature trend of 1°C per century
is not only confirmed by local studies regarding the
Italian Alpine area, but is even found to be double
than that [22, 23, 25].



It can be anticipated that the results of the present
work generally confirm the presence of positive
trends in minimum temperatures in all the examined
sites, but the estimated trend values are mostly
below 1°C per century, that is, the trend values
found by us are less than the half of those reported in
the last IPCC (2007) for similar areas.

2. DAILY DATA: TREATMENT AND METHODS
2.1. Imntroducing the database

The data examined in this paper are daily minimum
and maximum temperatures recorded at 7 climatic
stations located in Lazio region. These 14 time series
of daily data, expressed in °C, cover the second half
of the XX century, from the beginning of 1951 to the
end of 1999, but almost all series presented some
gaps within them and/or at their ends. The stations
studied in the present work were selected from a
larger set as those for which it was possible to fill all
the existing data gaps, thus obtaining uninterrupted
series of daily data. This permitted us to carry out a
complete stochastic analysis of these series, without
resorting to questionable zero-padding techinques
when evaluating the spectra. The seven climatic
stations studied are located in different districts of
the Lazio region, some on the coastline, others in the
urban centre of Rome and others in its suburbia. For
a complete list of these stations see Figure 1 and
Table 1. For a description of the data, of their quality
and of the gap-filling process they were subjected to,
see Appendix A.

2.2. The necessity of filling the data gaps

The temperature is a climatic parameter that, unlike
precipitation, shows a variability continuous in time
and space, so that it is possible to use methods based
either on multiple cross-correlations among
neighbouring stations or on simple auto-regression
in order to fill in the missing data. Generally, time
series having gaps at the beginning and at the end
have been previously trimmed. Afterwards, the
remaining inner data gaps have been filled using an
auto-regression method illustrated below. The filling
of the gaps is required when an estimation of the
power spectrum is desired, since such estimation is
based on the assumption that a regularly sampled
record having no gaps be available

2.3. The method used to fill the data gaps

Let us define as “gap” an uninterrupted run of one or
more missing data in a time series. As mentioned
above, the single missing data is indicated by a
fictitious numeric code (e.g., -999), so that a gap
consists of a more or less long sequence of these
special no—data codes. Sometimes a time series is
preceded or terminated by a gap, and sometimes
both circumstances are true. Such gaps are denoted
“terminal gaps” and, as a rule, these gaps have been

simply ignored by shortening the duration of the
time series.

The method used by us to fill in the inner gaps have
been described by the authors elsewhere
(Malvestuto, Beltrano, Testa, 2011: Eur.Phys.J Plus
(2011) 126:25 DOI: 10.1140/epjp/i2011-11025-9).
Proceeding in this way, we succeeded in filling all
the inner gaps for above mentioned 7 stations, so as
to obtain 14 daily time series, 7 of minimum and 7
of maximum temperatures, without any data gaps.

3. DATA ANALYSIS OF THE 14 COMPLETE DAILY
TEMPERATURE SERIES

3.1. Analysis of a series in the time domain and
in the frequency domain

In general a meteorological data series may be
regarded as the superposition of several simpler
components:

¢ a trend, representing the deterministic tendential
behavior on the large time scale. It indicates the
background tendency of the phenomenon, and
generally it is supposed to be a linear function
of time;

e some cyclic oscillations, among which we can
detect those, called seasonal, which have
periods (one year, half year, etc.) that are
directly linked to the astronomic cycles of the
planct Earth, and other having either shorter
periods or multi-year, pluri-decadal, or even
quasi-secular, periods (for example, phenomena
connected to the synodical cycle, or the large
time-scale oscillations related to global
phenomena like ENSO, NAO and MO, as well
as the almost-periodical perturbations associated
with the evolution of the main meteorological
systems).

o the erratic component (also called “stochastic
residual”), that represents the overall
environmental noise; the latter includes the local
meteorological variability at small scales and all
the natural random fluctuations.

The analysis of the historical series is usually based
on the assumption of stationarity of the erratic
component, according to which the random factors,
which have affected the behaviour of the time series
in the past, continue to act unchanged in the present,
and, probably, will even continue to exert their
effects in the future. Thus, on following the standard
approach of time series analysis, the erratic
component of the time series is here assumed to be
the realization of a stationary stochastic process,
which one can attempt to describe by means of some
parametric probability model.

After detecting and removing the trend and the main
cyclic components from the original data series, the
attention of our analysis will be focused onto the
erratic component, that is, on the zero-mean signal
obtained from the original signal after subtraction of



all its detected deterministic components. First, the
correlogram of the erratic component is computed in
order to get an ecstimate of the autocorrelation
function of the underlying stochastic process.
Second, a visual inspection of the shape of such
correlogram may allow to hypothesize a parametric
stochastic model, belonging to the so-called ARIMA
class, that may hopefully be used to represent it in
the best way (in the sense of a least-mean square
optimization). The total variability associated with
the erratic component will thus be partitioned in a
variance due to the internal memory (or, to the
degree of the auto-correlation) and a variance
attributable only to a residual white noise, typically a
normal white noise.

This model, on putting together the scparate
computer simulations of the deterministic and of the
erratic components, would thus permit the artificial
reconstruction in the past of the values of the given
meteorological series and, possibly, its cautious
prediction in the next future. Moreover, the choice
of a well determined model of autocorrelation
function permits the direct calculation of the power
spectrum of the series by a simple application of the
Wiener-Khinchin theorem (i.e., via the Blackman-
Tuckey method of spectrum estimation).

3.2. Strategy for the analysis of the temperature
series

All the 14 time series (7 of daily minimum, 7 of
daily maximum temperature) were subjected to
spectral  analysis after correlogram evaluation.
Every signal has been first processed in view of
detecting the deterministic component (a trend plus
some scasonal oscillations) and then extracting by
subtraction a zero-mean residual, that represents the
erratic component. Successively, on working on this
component, that is always present with a
conspicuous  variance, a formal, standard
representation has been tried via an autoregressive
model of low order. In all cases a simple AR(1)
model, with an optimal parameter value, depending
on the station and on the type of temperature record,
has proven to be sufficient. Moreover, even
considering all the 14 time series, the spread of the
values of such parameter proved to be rather narrow
(see column 7 in Table 1), as if all the temperature
records shared some universal feature characterizing
their erratic components.

We recall that a stochastic process is said to be
autoregressive of order p , briefly, an AR(p) process,
if the value observed at time t; is correlated to all the
p previous values of the same process, that is, to the
values observed at the instants t; 1, t;_2, ..., {;_, .
Such a process is characterized by the property of
possessing an internal “memory” of indefinite
length, but gradually vanishing with lag-time and
appreciably different from zero only for time delays
not much longer than p sampling intervals.

The procedure followed to process each time series
always started with a preliminary computation just
intended to recognize the frequencies of the relevant
seasonal cycles present in the signal:

o first, a zero-mean signal was obtained by
subtracting from the original series its mean
value computed over the whole period;

e sccond, an explorative periodogram has been
computed permitting a quick detection of the
main deterministic frequencies involved in
the series.

This preliminary treatment always resulted in
pinning down the same pair of main deterministic
frequencies, one corresponding to a 1-year period,
the other one to a 6-month period.

As a consequence of this preliminary analysis, the
following time series model has been adopted:

T'({t)=a+bt+ A cos(ot—e,)

1
+ A, cos(a,t — @,) + (1) M
where @ and b are the linear-trend parameters, @,
and o, = 2 o are the pulsations corresponding
exactly to a l-year and 6-month periods,
respectively, A; and A, are their corresponding
centered amplitudes, ¢, and ¢, the respective angular
phases, and 7(7) is the erratic component of the time
series, namely, its stochastic residual, to be further
modelled via a suitable auto-regressive process.
The six free parameters of the deterministic
component, that is, the two linear-trend parameters
(the slope b and the intercept ¢ ) and the four
harmonic parameters (the two amplitudes A; and A,
and the two phases ¢; and ¢,) characterizing the two
above mentioned scasonal oscillations, have been
simultancously determined via a multiple regression.
The residuals with respect to this multiple regression
are used to define the stochastic residual (), that

is assumed to have a purely stochastic nature.
Starting now to work exclusively on this residual
signal, its correlogram has been computed in order
to obtain an estimate of the wunderlying
autocorrelation function. Then, an autoregressive
AR(1) model has been fitted to the correlogram
according to the formula

t)=ar(t-D)+7Z()

where « is a suitable constant and Z(#) is a white
noise with a variance to be estimated. The constant
o , having an absolute value less than 1, is the only
characteristic parameter of the AR(1) process and
gives the shape of the corresponding theoretical
autocorrelation function - see Eq.(3). The optimal
value of « for the given time series is determined

by the slope of the regression line of 7()vs.
7(¢ — 1), while the variance of the white noise Z(1),

that must be equal to a percentage 1— a’® of the
variance of the full erratic component t(#), is
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measured by the spread of the residuals around the
regression line itself. In this way, the total variance
of the stochastic component 7(7) is separated into a
portion due to its auto-regressive behaviour and a
portion connected to the residual white noise, which,
by its very nature, cannot be given any further
explanation.

The original signal and its mean value
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Fig. 2. Ciampino: A 2-year segment of the daily minimum
temperatures recorded at Ciampino station from 1951 to
1999: about 800 days are shown. The thin horizontal line
near 10°C evidences the average of the signal over the
whole 50-year period.

The confirmation that the latter part of the variance
is essentially due to a white noise is obtained on the
ground of a practically flat appearance of the power
spectral density of the residual signal Z#), the latter
signal being computed at each time via Eq.(2),
starting from 7(#) and after an optimal

determination of the o parameter. As shown in Table
1, this modelling effort produces good results for
both daily temperature series at each of the stations
under examination.

One-sided periodogram of the centered signal
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Fig. 3. Ciampino: daily minimum temperatures 1951-
1999. The explorative periodogram with ordinates in log-

scale, in a very short segment of frequencies near the zero
frequency. The two frequencies of the main seasonal
components are evident as sharp peaks emerging above
the otherwise almost flat power level.

3.3 - Analysis of the temperature series

Each uninterrupted daily time series of temperature
has been presented versus time, as in Figure 2a,
where, for example, the series of daily minimum
temperatures at Ciampino has been plotted on
limiting the presentation to a short time interval of
about 800 days, starting with January 1, 1951.

The first preliminary step of the analysis, as stated
above, consists of merely subtracting from the
complete signal its time mean, so as to obtain a
centered signal, that is, a zero-mean signal (Figure
2b). In order to detect the presence of any cyclic
components in the series, a periodogram of the
whole 50-year centered signal has been calculated
(sce Figure 3). On the x axis we have the
“normalized frequency” of the single harmonic
component, X =@7/7x=27/T, that is a
dimensionless quantity, where T is its period,
@ =2x/T its pulsation, and t is the sampling
time-step (1 day) of the series. Note that the range of
x-values over which the spectrum can be determined
(namely, from zero frequency to the Nyquist
frequency) is O < x <1. Obviously, once this
normalized frequency is known, the period of the
single cyclic component is easily computed. For
example, if the time unit is 1 day (so that 7=1) a

cyclic component having X = 0.04 has a period
equal to 2(1/0.04) = 50 days.

On the other hand, on the y axis we have, for each
normalised frequency, the power density expressed
in decibel (dB). The shape of the periodogram shows
how the variability of the signal is distributed over
frequencies, namely, as a function of x. From the
segment of periodogram shown in Figure 3 it is clear
that the frequencies carrying most of the signal
energy are the two ones corresponding to periods of

1 year (Xx,=0.0054) and 6
(x, =0.011~ 2x,).

After having detected the two above mentioned main
frequencies, the two parameters of the linear trend
(intercept and slope) and the 4 harmonic parameters
(the two amplitudes and the two phases) of these two
main oscillations have been simultaneously
estimated by one multiple regression. In this way it
has been possible to evaluate all the six parameters
fixing the time behaviour of the whole deterministic
component (the trend plus two seasonal oscillations)
according to the model equation (1). As evident
from Figure 4, the deterministic component, when
plotted versus the original signal, already appears to
capture most of its time variability. By subtracting
now the deterministic component from the full
original signal, a new signal, called “stochastic

months



residual” or “erratic component”, is obtained (sce
Figure 5).

The signal and its deterministic component
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Fig. 4. The deterministic component of the signal (dashed
line) plotted for comparison over the full original signal.
The time span is again limited for both signals to the first
800 days.

We have no deterministic explanation for this
residual signal. However, we want to be sure that
this erratic component contains no more significant
deterministic cycles. To this purpose, its
periodogram has been computed and shown in
Figure 6.

From a comparison with the previous periodogram
shown in Figure 3, it is evident, first, that the two
main peaks corresponding to the strong scasonal
components are now absent (see lower panel) and,
second, that the dB range of the ordinates has
shrunk significantly (they vary now from -20 to
+10 dB only), implying a rather more uniform
distribution of the residual variability over
frequency. On the other hand, this distribution is
not so uniform as a pure white noise would imply.

The stochastic residual
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Fig. 5. Ciampino: daily minimum temperatures in the
period 1951-1999. The stochastic residual of the signal,
obtained after subtracting the deterministic component
(namely, the trend and the two main seasonal cycles).
Only the first 800 days are shown.

Therefore, the shape of this periodogram, while
suggesting that the erratic component of our original
signal is by now a genuine stochastic process
containing no significant deterministic component, it
also indicates that this residual stochastic process
possesses some degree of internal memory, that is
responsible for the evident monotonic decrease of
the energy distribution over frequency by a factor of
over 100 (see upper panel).

In the cffort of appreciating the extent of this
internal memory, the correlogram of the stochastic
residual has been computed by means of the well
known formula:

N_Zf(sf _'u)(sﬂk —,u)
r,=""—=% - (3)
Z;(Sj_'u)

(k=1,2,....,m)

where S, represents the signal at time j and p its

overall mean value, whereas % indicates the time
delay expressed in days, or in multiples of the basic
sampling time step. In Figure 7 the behaviour of this
correlogram vs. time-lag has been shown (dashed
line) up to a maximum time delay of 30 days (k.. =
40). The inspection of the auto-correlogram of a
stationary series should permit to quantify the level
of serial dependence among the data and thus to
quantitatively evaluate the link existing between one
value of the series and the few previous ones as a

function of their separation in time. The generic 7, ,

being substantially a correlation coefficient,
assumes values between -1 and +1, and the nearer
its absolute value is to one, the more corrclated the
original data series is with its lagged copy, namely
with the series obtained by shifting it & time steps

apart (negative values of /. obviously indicating an
anti-correlation).

One-sided periodogram of the stochastic residual
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Fig. 6. Ciampino: daily minimum temperatures in the
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period 1951-1999. Upper panel: the periodogram of the
stochastic residual over the whole frequency range. The
vertical dashed line marks the band of the low frequencies
that is zoomed in the lower panel. Here, it can be seen that
the two peaks corresponding to the main seasonal cycles,
well evident in Figure 3, are no longer present.

Now, if the signal consisting of the stochastic
residual under study were the realization of an
autoregressive AR(1) process with basic parameter
a , its theoretical autocorrelation function would
have the following shape:

i

P =a )
(-1T<a<1)

no matter which the sampling time step was, and its
spectrum would exhibit a distinct peak in the origin
of frequencies, like that one visible in Fig. 6. In the
case O < o <1 the behaviour (4) corresponds to an
exponential monotonic decrease with increasing
time delay £.

For a comparison with the actual correlogram, such
ideal behaviour has been shown in Figure 7 (solid
curve) after having determined the parameter ¢ via
an optimization. More precisely, an optimal estimate
of «a is given by the slope of the regression line
through the scatterplot of points in the plane (S;,
Sit1). S;denoting the value of the stochastic residual
at time j . Such scatterplot is presented in Figure 8a.

Correlogram and theoretical autacorrelation function
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Fig. 7. Ciampino: daily minimum temperatures in the
period 1951-1999. Correlogram of the stochastic residual
(dashed curve) and the hypothetical auto-correlation
function (stem-plot) of a related AR(1) process with its
parameter optimally determined through a linear
regression (see Figure 8a) .

Figure 7 shows that the sample correlogram (the
dashed curve) follows approximately the shape of
the hypothesized theoretical correlation function (4),
with the optimal a determined via linear regression,
at least far enough from the tails. This congruence
remains true for all the stations examined, up to time
delays less than about one week, while for longer
time lags it is seen that the correlogram values,

though slowly decreasing toward zero, remain
positive and definitely higher than the corresponding
theoretical tails. In other words, the agreement with
the theoretical autocorrelation function of an AR(1)
process is satisfactory only in a short range of small
time lags. Nevertheless, we can attempt to formulate
a very concise model of each observed correlogram
by using the optimal AR(1) process consistent with
it, as stated by the model equation (2), the parameter
o and the variance of the white noise Z(#¥) having to
be contextually determined during the optimization
process.

In order to appreciate the extent of the auto-
regressive character of the time series, and so to
check the goodness of fit of the adopted model (2),
we have shown in Figure 8a, for the examined
station, the regression line superimposed to the
scatterplot of data points (S;, S;;1). Hence one can
sec the strong dependence existing between the
temperature value measured today and the one
measured tomorrow. Far from forming a random
distribution, the data points exhibit a neat tendency
to align along a certain straight line having a positive
slope, in this case near to 2/3, implying a correlation
coefficient as high as 67%.

Estimating the o parameter of the AR(1) process
Stat.001: Ciampino @)
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Fig. 8. Ciampino station. (a) The plot of the stochastic
residual vs. itself one day before shows a definite slope
permitting the AR(1) parameter to be estimated via
regression; (b) The full plot vs. time of the residual noise,
obtained by subtracting the autoregressive component
from the stochasti residual (c) The plot of the residual
noise vs. the full stochastic residual no longer shows a
preferred direction of alignment for data-points, which
suggests we are left with a white noise; (d) this is
confirmed by the flat appearance of the periodogram over
the whole frequency range (0.5 is the dimensionless
Nyquist frequency).

The residual variability associated to the deviations
of the data points with respect to their regression line
is quantitatively estimated by the standard deviation
of the residuals, which coincides with the square
mean amplitude of the residual white noise Z(7)
appearing in the model equation (2). The
significantly high correlation coefficient associated
to this linear regression confirms the existence of a
close relationship between the temperature of one
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day and the one of the next day and justifies the use
of the AR(1) model to concisely represent the
internal memory inherent to the stochastic residual
extracted from the original signal.

A stochastic model is good if it is able to catch the
main part of the variability associated to the given
time series, that is, if the time series of the residual
signal Zt) is similar to the realization of a white
noise. In our analysis the goodness of the proposed
model is confirmed by the nature of the residual
noise Z(t), illustrated in Figure 8b-8c. In particular, a
first assessment of the goodness of the adopted
model (2) can be already obtained by looking at the
scatter plot in Figure 8c, whence it appears how
random the distribution of the residual noise is in
comparison with the data points in Fig. 8a and
considering how difficult it would be now to try
predicting the value of this remnant signal by using
the simultaneous value of the full erratic component.
The vertical extent of the scatter plot in Figure 8c,
when compared to its horizontal extent, also
evidences how the standard deviation associated to
the residual noise (about 5°C) is almost two times
smaller than that of the full stochastic residual (close
to 10 °C). It can be therefore concluded that the
auto-regressive character of the process is able alone
to explain about the half of the variability carried by
the full erratic component extracted from the
original temperature signal, while the other half has
no apparent explanation. Indeed, the appearance of
the residual noise, unlike the full stochastic
component of the signal, shown in Figure 5, is quite
similar to that of a white noise, since its power
spectrum appears practically flat, as evident from
Figure 8d. More precisely, since the variance of this
noise is about half the variance of the full stochastic
residual, we can conclude that, by means of the
AR(1) model, a consistent part of its variability has
been successfully explained on the base of its auto-
regressive structure.

As for the sample probability distribution underlying
this white noise, shown in figure 9, it is a bell-
shaped curve, apparently not far from a Gaussian,
but significantly different from it (even adopting a
conservative 95 % confidence level in the normality
test) because of the high y* value.
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Fig.9: A comparison between the observed values (narrow
bars) of the residual noise and the corresponding predicted
ones (wide bars) by a Gaussian distribution with the same
mean and variance. The very high ¥* value indicates that
the normality hypothesis must be rejected. In fact the
observed histogram is more sharply peaked and also fairly
skewed with a definite bias toward negative values.

This efficient and succinct modelling of the erratic
component of the original temperature series has
proved to fit well for all the seven stations examined
for both minimum and maximum temperatures.
Finally, it can be observed that, if one is able to
generate a noise with the right standard deviation
(the latter being a very modest part of the whole
variability of the original temperature series), it is
possible to build, for any real temperature series, an
artificial signal as the sum of a trend, two seasonal
oscillations and an AR(l) stochastic process,
including the given noise. By means of this artificial
signal the real temperature signal can be adequately
simulated, in the sense that the artificial and the real
signals can hardly be distinguished from each other.
This is evident from the comparison between the
two panels (a) and (d) in Figure 10, the first of
which shows the real signal as measured at
Ciampino station, whereas the second is the artificial
signal built as described above (a gaussian white
noise was used).
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Fig. 10. Ciampino: (a) The original signal (minimum
temperatures);, (b) The deterministic component of the
signal. (c) The stochastic residual of the signal. (d) An
artificial signal generated by computer simulation on using
an AR(1) process with the right a parameter and with the
noise variance typical of the given climatic station.

4. RESULTS AND DISCUSSION

The results obtained via spectral analysis for the
daily minimum and maximum temperature series are
quite similar for all the stations, thus confirming that
the stochastic model of type AR(1) is able to

adequately represent the erratic component of all
temperature records. The detailed quantitative
outcomes for all the 7 climatic stations are
summarized in Table 1.

Table I - Results of spectral analysis: Parameters characterizing the deterministic part (first 6 columns) and the stochastic
part (last 2 columns) of the two temperature series observed at each station. Slope of the trend (and the associated value
of F-statistic) are in column 1; the trend intercept is in column 2; the amplitudes of the two seasonal components, A| e A,
are in columns 3 and 5, while the corresponding phases, @, € ¢, , expressed in degrees, are in columns 4 and 6. The basic
parameter o of the modelling AR(1) process is in column 7, and the standard deviation of the residual noise Z; is in the

last column.
Noise Z;
Trend Slope I:; elr;:;:[;t A 0 A, 02 Alz(l) std. dev.
°C/century (Fe
Station name =3.84) °C °C | degrees | °C | degrees | --- °C
Column 1 2 3 4 5 6 7 8
Daily Maximum Temperatures
Ciampino -1.70 (13.95) 20.7 194 204 |1.1 90 0.71 2.0
Roma Collegio 039  ( 2.66) 204 (95| 202 |10| 8 | 076 1.7
Romano
Fiumicino 2.03 (30.76) 204 |81| 208 |09 92 0.67 1.8
Ardea 0.89 (10.83) 19.9 |83] 207 |0.8 91 0.72 2.1
Roma Eur 0.43 (2.94) 21.5 9.5| 203 1.0 92 0.76 2.1
Roma Macao 0.12 (0.87) 207 193] 204 |1.0 95 0.73 2.4
Roma Monte Mario -0.12 (0.13) 204 197 204 |12 94 0.75 2.4
Daily Minimum Temperatures
Ciampino 0.68 (8.09) 10,0 |76 208 |0.7 80 0.67 23
Roma Collegio 240 (64.91) 121 |78 206 |08| 8 | 0.68 2.0
Romano
Fiumicino 0.49 (4.1 10,6 |74] 210 |0.7 84 0.62 2.5
Ardea -3.36 (88.62) 9.8 72| 211 (0.6 83 0.70 2.6
Roma Eur 0.84 (991 108 |7.6]| 208 |0.7 64 0.70 2.6
Roma Macao 0.63 (6.63) 11.7 |76 206 |0.7 82 0.70 23
Roma Monte Mario 0.97 (13.75) 112 |7.5] 209 |0.7 83 0.71 2.4

Each series was decomposed into a deterministic
component, made of a linear trend (see the first 2
columns in the table) and of two seasonal harmonic
oscillations (columns 3 to 6), the larger having a 1-
year period, the smaller a 6-month period, and a
stochastic residual, which has been successfully
modelled by means of an AR(1) process, whose
computed parameters are listed in the last two
columns of Table 1.

The average daily maximum temperatures over the
period 1951-1999 range from 19.9 to 21.5°C among
stations, while the average daily minimum
temperatures range from 10 to 11.7°C (see column
2 of the table), with a difference between minimum
and maximum temperatures of about 10°C for all
stations. As for the trends of minimum temperatures
(column 1), with the exception of Ardea station,
where a rather important negative trend appears (a -




3.36°C per century that deserves further attention),
all the stations present positive trends, that are all
statistically significant at the 95% level, since the
corresponding F-values exceed the critical threshold
F.:x =3.84 appropriate to the given number of
degrees of freedom. In particular, Roma-Collegio
Romano presents a positive trend of about 2.5°C per
century. It is likely that these high values are due to
the heat-island effect enhancing locally the general
tendency to a slow increase of temperature with
time. However, this tendency is not in line with the
results we obtained for the daily maximum
temperatures: in fact the F-values allow to regard as
significant only three of the generally positive, but
modest, trends found at the 7 stations, and one of
them is even negative. The three stations are
Fiumicino with an extant +2.03°C/century, Ardea
with a more modest 0.9°C/century and Ciampino
that, against the general tendency, features a distinct
-1.7°C /century. However a best assessment of the
trends can be done on considering yearly averaged
data, or at most monthly data, rather than daily data
as those we have processed. As a matter of fact, in
the present work the estimation of the trends is of
secondary importance with respect to the main
objective, that consists of investigating the stochastic
properties of the temperature signals.

For what concerns the variability among the various
stations of the two main seasonal cycles detected
(see columns 3 to 6 of Table 1) , it can be noted that
for both of them there is, as plausible, a certain
uniformity over the whole geographic region. In
particular, the yearly cyclic component of the daily
maximum temperatures, having a yearly excursion
comprised typically between 16 and 20°C (or a
centered amplitude between 8.1 and 9.7°C), shows,
as it is reasonable to expect, its peak in the second
decade of July for all the stations (the yearly phases
¢ being near 205 degrees) and its trough 6 month
ecarlier, at a phase near 25 degrees (25 =205 + 180 —
360), that is, within the third decade of January. In
turn, the series of daily minimum temperatures
present yearly excursions comprised typically
between 14 and 15.5°C (or centered amplitudes
between 7.2 e¢ 7.8°C), the phases being almost
identical to those of the daily maximum
temperatures, what means: peaks in the second
decade of July, though with a bias to culminate few
days later, or toward the end of July, and troughs
occurring in the last decade of January, again with a
few-day delay with respect to the corresponding
dates of daily maximum temperatures. For what
concerns the 6-month seasonal cycle, we note that in
all stations its centered amplitude is about 10 times
weaker than that of the yearly cycle, and they are all
near 0.7°C for the daily minimum and 1°C for the
daily maximum (column 5 of the table); the
corresponding angular phases (column 6) imply, for
both temperature series, two peaks occurring in half
February and half August and the corresponding two

troughs in half May and half November (the values
of angular phase being mostly in the interval 80 — 95
degrees). Daily minimum temperatures show
however a systematic tendency to culminate few
days earlier than the maximum do.

Columns 7 ¢ 8 of Table 1 report, respectively, the
optimal values of the o parameters (or the
correlation coefficients) and of the standard
deviation of the residual noise Z(z). We again note a
discrete uniformity of values among the various
stations. In particular, once the deterministic part of
the signal has been eliminated, the remaining erratic
component can be modelled via an auto-regressive
process of the AR(1) type, with an internal
correlation coefficient a that is close to 0.7 for all
stations (see column 7 of the Table 1). This level of
internal correlation of 70%, given the high number
of data points used, can be regarded as highly
significant. The mean level of the residual white
noise Z(t) (see column 8), which is obtained after
subtraction from the erratic component of its auto-
regressive part, is approximately 2°C for the
maximum temperatures (1.7-2.4°C), and somewhat
higher for the minimum (2-2.6°C). This quantifies
the small part of the wvariability of the original
temperature signal that is not predictable at all. The
reason why the noise level is systematically higher
for the minimum temperatures is not immediately
clear and deserves further investigation. This noise
background in the temperature signal may
occasionally amplify the natural variability due to
the deterministic part of the signal and, though of
minor entity, can produce not negligible
consequences on  vegetation  growth  and,
particularly, on crops. In fact, a greater amount of
"energy" available for the processes of growth and
for the development of crops results from a
temperature increase. High temperatures in winter
and spring tend to establish an early start of the
growing season for crops, making them vulnerable
to sudden drops in temperature, that can produce
sensitive effects at the time of flowering. Second, a
consequent lengthening of the growing season in
situations of prolonged water scarcity, combined
with exceptionally high temperatures, can lead to
stress for crops, with serious consequences on
productivity. Increasing temperatures also promote
the proliferation of insect pests due to the
lengthening of the growing scason and to the
increase in their survival probability across the
winter.
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Appendix A: The features of the database used in the present study

The data came to us stored in text files with a
sampling time step equal to one day, the file format
being the following:

ywy (year) mm (month)
dd (day) frt.d (temperature in °C).

The first three columns contain invariably all the
serial dates from 1/1/1951 to 31/12/1999, even in the
presence of missing data, since in the latter case a
conventional numeric code -999, instead of a
normal temperature, was used to signal the absence
of the data.
The quality of the data was assessed at IBIMET (a
CNR Institute of Biometeorology in Florence),
where a staff of dedicated personnel performed the
quality control and the necessary homogenization of
the time series under the cover of a specific project,
financed by the National Academy of Sciences (alias
“Academy of the XL™), named “/mpatto del clima e
della  circolazione  atmosferica locale  sugli
ecosistemi  costieri  mediterranei: la  Tenuta
Presidenziale di Castelporziano come lo studio di un
caso”. The final report, titled “Analisi climatica

della zona costiera” was presented to the Academy
in 2009 with authors: Marina Baldi, Paolo
Coccimiglio, Alfonso Crisci, Francesco Primo
Vaccari, and Gianpiero Maracchi, (26 pp). For the
methods employed and the results reached in this
preliminary validation of the various temperature
series, we refer to this very detailed report.

For what concerns the missing data, the following
two tables illustrate the status of the database for
both Ty, and T« data in three successive stages: 1)
number of original gaps, as the data arrived to the
above mentioned IBIMET wvalidation group; ii)
number of gaps after the preliminary treatment done
at IBIMET, where a partial gap filling was also
performed; iii) number of gaps remaining in the data
after our additional gap filling process, illustrated in
this paper (see section 2.3) .

Tmax
period: 1951-1999 (17897 days)
Station name / Gaps number
number Original After 1st treatment After 2nd treatment

1) Roma Ciampino 208 (1.1%) 12 (0.1%) 0
2) Roma Collegio 0.0  (0.0%) 12 (0.1%) 0
Romano

2 ;‘;’ng ;j’m’c’”o 3345 (18.3%) 2994 (16.7%) 0
4) Ardea 6297  (34.5%) 47 (0.3%) 0
5) Roma Eur 14001 (76.7%) 12 (0.1%) 0
6) Roma Macao 8998  (49.3%) 13 (0.1%) 0
7) Roma Monte Mario | 12776  (70.0%) 13 (0.1%) 0

Tmin
period: 1951-1999 (17897 days)
. Gaps number
Station name / number Original After 1st treatment | After 2nd treatment

1) Roma Ciampino 206 (1.1%) 12 (0.1%) 0
2) Roma Collegio Romano 0.0 (0.0%) 12 (0.1%) 0
3) Roma Fiumicino (1959-1999) 3332 (18.2%) | 2984 (16.7%) 0
4) Ardea 6297 (34.5%)| 46 (0.3%) 0
5) Roma Eur 14001  (76.7%)| 12 (0.1%) 0
6) Roma Macao 8998  (49.3%)| 13 (0.1%) 0
7) Roma Monte Mario 12776  (70.0%) 13 (0.1%) 0

Note that out of the original 15 stations for which we
had data covering the period 1951-19999, we

decided to proceed with our analysis using only the
seven stations for which we succedeed in entirely
filling the residual gaps by using our above
mentioned method. The data of the other eight
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stations, where some gaps remained even after
applying our method, were not used in this work.

Before proceeding to analyze the single stations a
brief correlation analysis (at zero time-lag) was

For the seven stations processed the temperature carried out revealing the following  correlation

series extend all from 01-01-1951 to 31-12-1999,  structure among stations:

except the two Fiumicino series which extended

from 01-01-1959 to 31-12-1999 (only 41 years of

data, instead of 49).

Correlation matrix for Tmin-series (lower left) and for Tmax-series (upper right):

Stat. 1 2 3 4 5 6 7

1 1 0.9861 0.9749 0.9525 0.9848 0.9726 0.9782
2 0.9715 1 0.9760 0.9551 0.9851 0.9711 0.9769
3 0.9665 0.9584 1 0.9506 0.9731 0.9591 0.9650
4 0.9364 0.9264 0.9294 1 0.9592 0.949%4 0.9530
5 0.9695 0.9645 0.9597 0.9472 1 0.9852 0.9909
6 0.9638 0.9673 0.9495 0.9325 0.9715 1 0.9835
7 0.9718 0.9709 0.9618 0.9457 0.9849 0.9768 1

After subtraction of the trend, of the seasonal
components and of the autoregressive stochastic part
from the full signal, at each station a residual white-
noise signal was obtained. These residual noises

were again analyzed to ascertain the possibly
remnant cross correlation, yielding the following
situation.

Post-Correlation matrix for Tmin-series (lower left) and for Tmax-series (upper right):

Stat. 1 2 3 4 5 6 7
1 1 0.8143 0.6664 0.5189 0.8305 0.7182 0.7995
2 0.7625 1 0.6690 0.5038 0.8023 0.6866 0.7826
3 0.7383 0.6675 1 0.4497 0.6503 0.5333 0.6202
4 0.6824 0.6567 0.6276 1 0.5853 0.5200 0.5609
5 0.8282 0.7960 0.7208 0.7668 1 0.8489 0.9230
6 0.7748 0.7818 0.6457 0.7012 0.8636 1 0.8459
7 0.8252 0.8072 0.7094 0.7431 0.9211 0.8846 1

From the comparison of these two correlation
matrices it appears that for almost all the pairs of
stations a relevant part of the initial correlation
remain even after the removal of the deterministic
components of the signal and of the autoregressive
part. This indicates that the white noises
superimposed to the temperature series are likely to
be referable to some synoptic scale fluctuations
rather than to random disturbances of mere local
nature.
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